Skip to main content

Thuật toán BFS – Tìm kiếm theo chiều rộng

Thuật toán BFS – Tìm kiếm theo chiều rộng

1. Mô tả
- Đây là thuật toán tìm các đỉnh bằng cách duyệt theo chiều rộng.
- Xuất phát từ 1 đỉnh và đi tới các đỉnh kề nó, tiếp tục cho đến khi không còn đỉnh nào có thể đi.
- Trong quá trình đi đến đỉnh kề, tiến hành lưu lại đỉnh cha của đỉnh kề để khi đi ngược lại từ đỉnh Kết thúc đến đỉnh Xuất phát, ta có được đường đi ngắn nhất.
- Sở dĩ thuật toán này tìm được đường đi ngắn nhất là nhờ vào cơ chế tô màu và lưu đỉnh cha. Quá trình tô màu khiến 1 đỉnh không thể xét 2 lần trở lên và có thể xem được đường đi từ đỉnh Kết Thúc đến đỉnh Xuất phát dựa vào việc lưu đỉnh cha.
- Sau đây là minh họa về thuật toán:
Hình 1 : Xuất phát từ đỉnh 1Untitled
Hình 1
 + Hình 2 : Đi đến đỉnh 2, như vậy nút 1 là nút cha của nút 2
Untitled
Hình 2
 + Hình 3 : Đã đi hết tất cả các đỉnh kề của đỉnh 1, tiến hành bôi đen đỉnh 1
Untitled
Hình 3
 + Hình 4: Xuất phát từ đỉnh 2, chọn đỉnh 3, nút cha của đỉnh 3 là đỉnh 2
Untitled
Hình 4
 + Hình 5 : Xuất phát từ đỉnh 2, bôi đen đỉnh 4, nút cha của đỉnh 4 là đỉnh 2
Untitled
Hình 5
 + Hình 6 : Đã đi hết tất cả các đỉnh kề của đỉnh 2, tiến hành bôi đen đỉnh 2
Untitled
Hình 6
 + Hình 7 : Xuất phát tử đỉnh 3, đi đến đỉnh 7, như vậy đỉnh 3 là đỉnh cha của đỉnh 7
Untitled
Hình 7
 + Hình 8 : Xuất phát từ đỉnh 3, đi đến đỉnh 5, như vậy đỉnh 3 là đỉnh cha của đỉnh 5
Untitled
Hình 8
 + Hình 3 : Đã đi hết tất cả các đỉnh kề của đỉnh 3, tiến hành bôi đen đỉnh 3
Untitled
Hình 9
 + Hình 10 : Xuất phát từ đỉnh 5, đi đến đỉnh 6, như vậy đỉnh 5 là đỉnh cha của đỉnh 6
Untitled
Hình 10
 + Hình 11: Đã đi hết tất cả các đỉnh kề của đỉnh 5, tiến hành bôi đen đỉnh 5
Untitled
Hình 11
 + Hình 12: Đã đi hết tất cả các đỉnh kề của đỉnh 7, tiến hành bôi đen đỉnh 7
Untitled
Hình 12
 + Hình 13 : Đã đi hết tất cả các đỉnh kề của đỉnh6, tiến hành bôi đen đỉnh 6
Untitled
Hình 13
 - Như vậy ta vừa đi hết tất cả các đỉnh trong đồ thị, và mỗi lần đi đến đỉnh mới, ta đều lưu lại nút cha của đỉnh mới, dựa vào những đỉnh cha này, ta có liệt kê đường đi ngắn nhất bằng cách đi ngược từ đỉnh Kết thúc, đến đỉnh cha của đỉnh Kết thúc … rồi đến đỉnh cha của đỉnh tiếp theo … đến đỉnh Bắt đầu.
2. Cài đặt
Hình 14: Cài đặt thuật toán BFS
Untitled
Hình 14
 - Hình 15: In đường đi từ đỉnh Xuất phát đến đỉnh Kết thúc
Untitled

Comments

Popular posts from this blog

Socket Android Client to PC Server C#

Using AsynCallback C# Android Client connect Server C# Source code:  http://ow.ly/OlXj309O1mj c# socket multi client, socket c# example, socket server c#, socket c# tutorial, asynchronous socket in c#, c# socket multiple clients, c# socket server multiple clients, Download source code:  Click Here

Bài tập thuật toán C/C++ Và Tuyển tập đề thi olympic

Gồm: +  Các thuật toán của Lê Minh Hoàng + Tuyển tập các đề thi olympic tin học sinh viên Link down: Tại đây

Mẹo và giải thuật C# dành cho người mới bắt đầu

Với nội dung kiến thức cơ bản nhất. Gồm 31 trang với những nội dung:  1. Kết nối CSDL SQL  -----------How to Create SQL Connection in C# 2. Đọc ghi file text với C#  -----------How to Write Text to a Txt File in C# -----------How to Read Text from a TXT File 3. Xóa Cookie C# -----------How to Delete Cookie Using C# 4. Gửi main sử dụng tài khoàn Gmail với C# -----------How to Send Email Using Your Gmail Account in C# 5. Kiểm tra ký tự nhập vào từ bàn  phím -----------How to Check If a Key Is Pressed In C# 6. Đổi tên file trong C# -----------How to Rename a File Using C# 7. Vô hiệu hóa chuột trong ô textbox C# -----------How to Disable Right Click in C# Textbox 8. Chọn tất cả trong listbox -----------How to Add Select All Button or Checkbox in CheckedListBox 9. Tạo mới thư mục bằng C# -----------How to Create a New Folder Using C# 10. Lấy các tiến trình đang chạy C# ----------- How to Get List of All the Running  Processes in C# 11. Tả...